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Contents

▶ Evolutionary computation

▶ Its application to robotics: evolutionary robotics
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Section 1

Evolutionary computation
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Goal: optimization

▶ User has a broad idea of the universe of possible

▶ User has a way for measuring the quality

▶ “Computer: search the possible for a good solution!”

How?

A significant case:

▶ universe of possible: “physics”

▶ quality: ability of being alive

▶ computer: nature

▶ how? natural evolution

(Who is the user?)
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Evolution

A general and basic scheme:

▶ a population of individuals compete for limited resources

▶ the population is dynamic: individuals die and are born

▶ fittest individual survive and reproduce more than the others

▶ offspring inherit some characters from parents (they are
similar but not identical)

On/by/for computers? Evolutionary computation (EC)
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EC: a bit of history

1930s first ideas

1960s ideas development using first computers

1970s exploration

1980s exploitation

1990s unification

2000s+ mature expansion
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Communities

At least three communities:

▶ biologists: simulate/understand real evolution

▶ computer scientists/engineers: build interesting artifacts

▶ artificial-life researchers: build/study artificial worlds

Result:

▶ some duplications

▶ different vocabularies

▶ strong habits

Kenneth A De Jong. Evolutionary computation: a unified
approach. MIT press, 2006
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What can be taught/learned?

Here:

▶ general scheme

▶ terminology

▶ some significant variants

▶ general usage guidelines

Not here:

▶ (variant) details

▶ detailed motivation (“theory”)

▶ specific tools
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General scheme

▶ a population of individuals compete for limited resources

▶ the population is dynamic: individuals die and are born

▶ fittest individual survive and reproduce more than the others

▶ offspring inherit some characters from parents (they are
similar but not identical)

Some questions:

▶ what is an individual?

▶ what is a population? what are resources?

▶ how individuals compete?

▶ how fitness is measured?

▶ how do individual reproduce?
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Individual

A candidate solution for the considered problem:

(phenotype)

▶ a program in a given programming language

▶ a set of numerical parameters

▶ a picture

▶ . . .

Internally represented as:

(genotype)

▶ itself (program, set, picture, . . . )
▶ some well defined data structure:

▶ a fixed/variable-length string of bits
▶ an abstract syntax tree
▶ . . .
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Individual: why genotype/phenotype?

▶ To resemble nature
▶ To ease manipulation

▶ how two programs should reproduce?
▶ how two images should reproduce?

▶ To allow reuse, hence enabling actual usage of EC
▶ someone found a good way of making bits strings reproduce
▶ user “just” need to decide how to transform

(genotype-phenotype mapping) a bits string to his/her
solution form (e.g., numerical parameters)
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Population and competition for resources

Mainstream:

▶ a population is a set of individuals with a fixed (max) size

▶ “limited resources” is a place in the population

The population is dynamic:

▶ when a new individual is born, some individual must leave the
population (die): which one?
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Population dynamics

How/when individuals are replaced? (generational model or
replacement strategy)

Underlying (and common) assumptions:
▶ individuals life is instantaneous

▶ given the genotype, the phenotype (if any) and the fitness are
immediately known

▶ time flowing is determined by births (and deaths)
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Generational model: general scheme

Parameters:

▶ a population of m parents

▶ a population of n offspring (built from parents; how? later)

▶ a Boolean flag (overlapping vs. non-overlapping)

(Recall: population size is fixed)
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Overlapping generational model

At each time tick:

1. build n offspring from the m parents

2. obtain an n +m population by merging parens and offspring

3. select m individuals to survive
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Non-overlapping generational model

At each time tick:

1. build n offspring from the m parents (assume n ≥ m)

2. select m individuals to survive among the n offspring

All parents die!
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Common cases

▶ n = m, overlapping

▶ n = m, non-overlapping

▶ n = 0.8m, overlapping

▶ n = 1, overlapping (steady state)

Problem:
▶ different degrees of dynamicity in the single time tick

▶ makes different variants comparison difficult

Solution:

▶ measure time flowing as number of births referred to
population size m

▶ a generation occurs each m births
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Selection criteria

How to

▶ select individuals to survive?

▶ select parents to reproduce?

Many options:

▶ uniform (neutral) selection

▶ fitness-proportional selection

▶ rank-proportional selection

▶ truncation selection

▶ tournament selection

▶ . . .
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Fitness/rank-proportional

Fitness-proportional:

1. given the numerical fitness of each individual

2. randomly pick one individual with probability proportional to
the fitness (the better, the larger probability)

Rank-proportional:

1. given the rank of each individual in a fitness-based ranking

2. randomly pick one individual with probability proportional to
the rank (the better, the larger probability)

(Can be applied to a non-numerical fitness, in principle)
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Uniform and truncation

Uniform:

1. pick randomly an individual (with uniform probability)

Truncation:

1. pick the best individual (elitism)

(Deterministic)



21/138

Tournament selection

Given a parameter nsize (size of the tournament):

1. randomly (with uniform probability) pick nsize individuals

2. from them, choose the one with the best fitness
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Selection criteria differences

Is criterion A better than criterion B? Just measure!

Criteria differ in how strongly they tend to prefer fit vs. unfit
individuals:

▶ uniform selection: no preferences

▶ truncation selection: strong preference of fit individuals

▶ tournament: nsize → 1: no preference, nsize → m: strong
preference
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Selecting fit/unfit individuals

Strong preference (or selective/evolutionary pressure):

▶ population tends to converge to fittest individuals

▶ evolution concentrates in improving most promising solutions
(exploitation)

▶ risk of “falling” in local optimum

Weak preference (or selective/evolutionary pressure):

▶ population includes also unfit individuals

▶ evolution investigates many different (maybe not promising)
solutions (exploration)

▶ risk of not finding a good solution

Exploration/exploitation trade-off is hard to rule!
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Selectors: common cases

▶ Reproduction: tournament of nsize
▶ e.g., m = npop = 500, nsize = 5

▶ Survival: truncation

▶ Reproduction: fitness proportional

▶ Survival: truncation
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Reproduction

Build n offspring from the m parents. How?
General scheme:
▶ given one or more parents, an offspring is generated by

applying a unary or binary genetic operator on parent
genotypes
▶ unary (mutation): f : G 7→ G
▶ binary (recombination or crossover): f : G2 7→ G

Then:

▶ given n and a set of weighted operators, generate offspring
with operators according to their weights (deterministically or
stochastically)

▶ or generate offspring by applying n (or n
2 ) times the crossover

and then the mutation on the resulting individual(s)
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Choice of operators

Operators:

▶ crossover for generating 80% of offspring

▶ mutation for generating 20% of offspring

Deterministically:

1. for 0.8n times

1.1 select 2 parents (with reproduction selection criterion)
1.2 apply crossover to genotypes

2. for 0.2n times

2.1 select 1 parent (with reproduction selection criterion)
2.2 apply mutation to genotype
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Choice of operators

Operators:

▶ crossover for generating 80% of offspring

▶ mutation for generating 20% of offspring

Stochastically:

1. for n times

1.1 randomly choose between mutation/crossover with 20/80
probability

1.2 select 1 or 2 parents (with reproduction selection criterion)
accordingly

1.3 apply operator to genotype(s)
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Mutation for bits string genotypes

Most classical option: probabilistic bit flip mutation

1. copy parent genotype gp as child genotype gc

2. for each bit in the in gc , flip it (0→ 1 or 1→ 0) with p
probability

Commonly, p = 0.01

gp = 001010011101010101100100101

gc = 001010111101010101101100101
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Crossover for (bits) string genotypes

Many options:

▶ one-point crossover

▶ two-points crossover

▶ n-points crossover

▶ uniform crossover

▶ . . .
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One-, two-, n-points crossover

Assume parents with equal genotype size:

1. choose randomly one (two, n) cut points in the genotype
(indexes i such that i < |gp1 | = |gp2 |)

2. child bits before the cut point comes from parent 1, child bits
after the cut point comes from parent 2

In general, jth bit comes from parent 1 iff closest larger cut point
is even, from 2, otherwise.
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One-, two-, n-point crossover

One-point:

gp1 = 00101001110101010|1100100101
gp2 = 11101010101001010|0101110111
gc = 00101001110101010 0101110111

Two-points:

gp1 = 0010100|1110101010|1100100101
gp2 = 1110101|0101001010|0101110111
gc = 0010100 0101001010 1100100101
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Uniform crossover

A cut point is placed at each index with p = 0.5 probability
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Crossover with variable length (bits) string genotype

Many variants:
▶ one-, two-points crossover

▶ cut points may be different within parents
▶ child genotype size may be larger or smaller than parents sizes

▶ . . .

One-point:

gp1 = 00101001110101010|1100100101
gp2 = 111010101|010010100101110111
gc = 00101001110101010 010010100101110111

Genotype-phenotype mapping must allow for variable length
genotypes!
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Mutation (trees)

Parent

(x − y)
1

x
+ 0.5

+

0.5·

/

x1

−
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Child

(x − y)
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x
+ 1 + y

+

+

1y

·

/

x1

−

yx

1. choose a random subtree

2. replace with a randomly generated subtree

Usually, constraints on depth



35/138

Crossover (trees)

Parent 1

(x − y)
1

x
+ 0.5

+

0.5·

/

x1

−

yx

Parent 2

(1 + x)(1− y)

·

−

y1

+

x1

Child

1 + x + 0.5

+

0.5+

x1

1. choose a random subtree in parent 1

2. choose a random subtree in parent 2

3. swap subtrees (child is copy of parent)

Usually, constraints on depth
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Mutation for real-valued vectors (G = Rp)

Gaussian mutation

▶ parent gp, child gc
▶ for each i ∈ 1, . . . , p, g i

c = g i
p + ϵ, with ϵ ∼ N (0, σ)

▶ σ is a parameter representing the mutation strength
▶ large σ → exploration
▶ small σ → exploitation

. . . and many similar variants
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Crossover for real-valued vectors (G = Rp)

Besides all suitable for string genotypes, also (aka geometric
crossover):

▶ parents gp1 , gp1 , child gc
▶ for each i ∈ 1, . . . , p, g i

c = g i
p1 + λ(g i

p2 − g i
p1), with

λ ∼ U(0, 1)
Lacks the ability of explore out of the hyperrectangle enclosing the
population
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Role of operators

Mutation (x)or crossover?

▶ mutation → exploitation

▶ crossover → exploration

But the EC community is still debating about this point. . .
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Population initialization

▶ Totally random

▶ More specific approaches, dependent on genotype form
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Fitness

Fitness of an individual = ability to solve the problem of interest

▶ errors on several fitness cases by
execution/simulation/application

Common cases:

▶ one numerical index

▶ more than one numerical indexes

▶ . . .

Closely related with selectors
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Many indexes: multiobjective

f (i) = ⟨f1(i), . . . , fn(i)⟩

How to compare individuals i1, i2 ?
▶ linearization

▶ f (i) = α1f1(i) + · · ·+ αnfn(i)

▶ lexicographical order

▶ compare f1(i1)
?
> f1(i2); if tie, f2(i1)

?
> f2(i2); . . .

▶ Pareto dominance

▶ . . .

Q: with which selectors?
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Pareto dominance

i1 dominates i2 iff:

∀j , fj(i1) ≥ fj(i2) ∧ ∃k, fk(i1) > fk(i2)

0 2 4 6 8 10
0

2

4

6

8

10

f1

f 2

▶ 1st Pareto front:
undominated solutions

▶ 2nd Pareto front:
undominated solutions,
while not considering 1st
front

▶ . . .
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An example EA

b ← 0
I = Initialize()
while b ≤ npopngen do

I ′ = ∅
for all i ∈ {1, . . . , npop} do

(gp1 , pp1 , fp1)← SelTournament(I , ntour)
(gp2 , pp2 , fp2)← SelTournament(I , ntour)
gc ← om(oc(gp1 , gp2))
I ′ ← I ′ ∪ {(gc ,Φ(gc), f (Φ(gc))}
b ← b + 1

end for
I ← I ∪ I ′

while |I | > npop do
I ← I \ SelWorst(I )

end while
end while
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In practice

▶ Is my EA working?

▶ When to stop evolution?

▶ How to choose value for parameter X?

0 50 100
0.94

0.96

0.98

1

1.02

Generation

F
it
n
es
s
f
(i
)

On many (≥ 30) runs!
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Issues

▶ Diversity

▶ Variational inheritance

▶ Expressiveness

▶ . . .
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Diversity

Is the population diverse enough?

▶ “No” → too much exploitation → local minimum
▶ “Yes” → in principle, no drawbacks

▶ how to measure diversity?
▶ how to enforce/promote diversity?

Giovanni Squillero and Alberto Tonda. “Divergence of character
and premature convergence: a survey of methodologies for
promoting diversity in evolutionary optimization”. In: Information
Sciences 329 (2016), pp. 782–799
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Variational inheritance

Are children similar but not identical to parents?

▶ “Too much similar” → too much exploitation → local
minimum, no/slow evolution

▶ “Too much different” → no exploitation, just coarse
exploration (random walk)

▶ How to measure? (locality, redundancy, degeneracy,
uniformity, . . . )

▶ How to tackle? Operators, mapping, both?



48/138

Expressiveness

Is the representation (phenotype) expressive enough?

▶ “Low expressiveness” → good/optimal solution might not be
representable, or might not be reachable

▶ “Large expressiveness” → large search space → very long or
infiniti convergence time
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Fitness landscape

▶ How are genotype and fitness spaces related?

▶ What does a small step on one correspond to on the other?

Q: is phenotype space relevant?
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Fitness landscape

Philip A Romero and Frances H Arnold. “Exploring protein fitness landscapes

by directed evolution”. In: Nature reviews Molecular cell biology 10.12 (2009),

p. 866
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EC in action

https://youtu.be/4pdiAneMMhU

https://youtu.be/4pdiAneMMhU
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Genetic Algorithms (GA)

▶ Genotype = phenotype = bits string

▶ m = n ≈ 1000, no overlapping

▶ Fitness-proportional selection, or multiobjective
(Pareto-based) selection

▶ Most widely used/studied

▶ Genotypes often encodes numerical parameters
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Genetic Programming (GP)

Focus: individuals are programs

▶ Genotype = phenotype = tree (tree-based GP) or list of
instructions (linear GP)

▶ m = n ≈ 1000, overlapping

▶ Tournament selection

▶ Syntactic/semantic validity?
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Grammatical Evolution (GE)

A form of GP based on GA, given a context-free grammar G
▶ Genotype = bits string, phenotype = string ∈ L(G), by means

of a mapping procedure

▶ steady state (m ≈ 500, n = 1, overlapping) or m = n,
overlapping

▶ Tournament selection

<expr> ::= ( <expr> <op> <expr> ) | <var> | <num>

<op> ::= + | - | * | /

<var> ::= x | y

<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Properties of the representation

Given:
▶ genotype space G, phenotype space P, fitness space F

▶ a (partial) order ≺ existing in F
▶ genotype-pheotype mapping: Φ : G 7→ P

▶ often Φ : G 7→ P ∪ ⊥, where ⊥ represents an invalid solution

▶ fitness function: f : P 7→ F
▶ mutation om : G 7→ G and crossover oc : G2 7→ G
▶ distances dG : G2 7→ R+ and dP : P2 7→ R+

some properties of the representation can be defined
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Invalidity

The tendency of generating invalid phenotypes:

invalidity =
|{g ∈ G : Φ(g) = ⊥}|

|G|

or, experimentally, with G
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Degeneracy

The degree to which different genotypes are mapped to the same
phenotype:

degeneracy = 1− |P|
|G|

or, experimentally, with G and P = {Φ(g), g ∈ G}

Notes:

▶ often called redundancy

▶ assuming P is the range of Φ (i.e., P = {Φ(g), g ∈ G})
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Uniformity of degeneracy

The degree to which the sizes of different sets of genotypes
mapping to the same phenotype differ:

Gi = {g ∈ G : Φ(g) = pi}, ∀pi ∈ P
S = {|G1|, |G2|, . . . , |G|P||}

non-uniformity =
σS
µS

(coefficient of variation)

or, experimentally, with G and P = {Φ(g), g ∈ G}
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Redundancy

The degree to which parts of the genotype do not concur in the
mapping process

▶ how to measure depends on the representation

▶ is a source of degeneracy: genotypes which differ in redundant
part are (likely) mapped to the same phenotype
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Locality

The degree to which close genotypes are mapped to close
phenotype:

DG = {dG(gi , gj), i , j ∈ {1, . . . , |G|}}
DP = {dP(Φ(gi ),Φ(gj)), {i , j ∈ 1, . . . , |G|}}

locality = cor(DG ,DP)

or, experimentally, with G and P = {Φ(g), g ∈ G}; or simpler
versions for discrete spaces (no need for distance, nor for
correlation)
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Evolvability

The likelihood of obtaining a better individual after the application
of a genetic operator

▶ involves the operator and the fitness

evolvabilitymutation = P(f (Φ(om(gp)) ≺ f (Φ(gp)))

evolvabilitycrossover = P

 f (Φ(oc(gp1 , gp2)) ≺ f (Φ(gp1))
∧

f (Φ(oc(gp1 , gp2)) ≺ f (Φ(gp2))


More in general: the tendency of an evolutionary system to
improve solutions
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Why properties matter: the GE case

g = 01101001 00001101 01011000 00000011 11000110 01111101 (bits)

= 105 13 88 3 198 125 (integers)

i gi |rs | j w Phenotype p

<expr>

0 105 3 0 0 ( <expr> <op> <expr> )

1 13 3 1 0 ( <var> <op> <expr> )

2 88 2 0 0 ( x <op> <expr> )

3 3 4 3 0 ( x / <expr> )

4 198 3 0 0 ( x / ( <expr> <op> <expr> ) )

5 125 3 2 0 ( x / ( <num> <op> <expr> ) )

0 105 10 5 1 ( x / ( 5 <op> <expr> ) )

1 13 4 1 1 ( x / ( 5 - <expr> ) )

2 88 3 1 1 ( x / ( 5 - <var> ) )

3 3 2 1 1 ( x / ( 5 - y ) )

<expr> ::= ( <expr> <op> <expr> ) | <var> | <num>

<op> ::= + | - | * | /

<var> ::= x | y

<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Q: which properties are affected?
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An alternative: WHGE genotype-phenotype mapping

Alberto Bartoli, Mauro Castelli, and Eric Medvet. “Weighted
Hierarchical Grammatical Evolution”. In: IEEE transactions on
cybernetics (2018)
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Lab: Build your one EA (≈ 3 h)

Build an EA that can be used for solving the problem of finding a
given target string. (A toy problem!)

1. decide solution representation

2. decide fitness function

3. decide EA components
▶ generational model
▶ genetic operators
▶ selection criteria

4. implement

5. investigate impact of other design choices
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Section 2

Evolutionary robotics



66/138

What is Evolutionary Robotics?

Definition
Evolutionary Robotics is the application of the techniques,
methods, and principles of Evolutionary Computation for the
automatic design of the body (morphology) and the mind
(controller) of autonomous robotic agents.
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Subsection 1

Evolving a neural network
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What is artificial neural network (ANN)?
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ANN for controlling (small) robots

E.g., Thymio-II robot:

▶ inputs: 7 IR proximity sensors (and others)

▶ outputs: 2 motors (wheels)



70/138

Designing a neural network

Choose:

▶ topology

▶ weights (θ)

▶ other “details”: e.g., activation function
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Just the weights

A possible EC-based approach:

▶ phenotype: ANN with pre-fixed topology

▶ genotype: θ ∈ Rp, p depending on the topology

▶ genetic operators suitable for G = Rp

▶ other representation-independent parameters (e.g., selection
criteria, generational model)

▶ fitness (mainly problem-related)

How to choose the topology?

▶ usually, input and output size are predefined, so. . .

▶ . . . how to choose how many hidden layers and how many
neurons per layer? (expressiveness)
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Subsection 2

NEAT
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An alternative to “just the weights”

Kenneth O Stanley and Risto Miikkulainen. “Evolving neural
networks through augmenting topologies”. In: Evolutionary
computation 10.2 (2002), pp. 99–127

Key ideas:

▶ evolve topology and weights together (TWEANN)

▶ starting with simple topology and then add complexity

▶ “protect” innovation
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Representation for TWEANN

How to represent the set of ANN with different topologies?
▶ direct: genotype ≈ phenotype

▶ genotype specifies nodes, connections, and weights

▶ indirect: genotype ̸= phenotype
▶ genotype specifies how to build a phenotype

Key question: how to meaningfully do crossover?

▶ meaningfully → variational principle

▶ trivial solution: avoiding crossover
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Crossover

How to meaningfully do crossover?

▶ networks (genotypes) of different size
▶ competing conventions (degeneracy)

▶ many genotypes for the same network, how to align
components?
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NEAT representation

Key component: the innovation number!

▶ a global counter assigned to any new created connection, on
whichever individual
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Mutation(s)

Three variants:

▶ perturb a weight

▶ add a connection with random weight (new gene!)
▶ add a node (new gene!)

▶ “in the middle” of a connection (wold): the existing connection
is disabled and replaced with two connections connecting the
new node (w in

new = 1, wout
new = wold)



78/138

Mutation(s)
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Crossover

1. Align genes by innovation number

2. Matching genes are inherited randomly from one of the
parents

3. The remaining (disjoint or excess) are inherited from the more
fit parent
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Crossover
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Complexification

Instead of starting with a random population, including possibly
complex individuals, start with only simple individuals (ANN with
no hidden layer) →
▶ search space is “never” too large, but

▶ expressiveness is still virtually high
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Protecting innovations

Despite representation and operators attempt to reduce the risk,
structural modification might negatively affect the fitness
Idea: protect the innovative individuals
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Protect new individuals

Instead of competing against the full population, individuals
compete in a limited niche (speciation):

▶ a specie is a set of similar individuals

▶ in NEAT, similarity is based on number matching nodes and
weights

▶ individuals in the same niche share the fitness: f ′(xi ) =
f (xi )
|Pj |
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NEAT works!

▶ Experimentally evaluated when introduced:
▶ two tasks: XOR network, two poles on cart balancing
▶ the three components are all useful

▶ Still widely used

▶ Extended in many ways
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Subsection 3

How to choose the fitness?
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Premise

EC as a black box optimizer: I do not know anything about the
problem, I just want a solution

In ER:

▶ I want the robot to perform a task

▶ I do not know how
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A priori knowledge

“I do not know how” → often, it is not fully true!

Extreme cases:

▶ high knowledge: the desired fine behavior is known

▶ no knowledge: just the aggregate goal is known

→ how to design the fitness function?
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Fitness function design

Mohammad Divband Soorati and Heiko Hamann. “The effect of
fitness function design on performance in evolutionary robotics:
The influence of a priori knowledge”. In: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation.
ACM. 2015, pp. 153–160

Scenario (simulated):

▶ small robots with 2 wheels, 6 front and 2 back proximity
sensors

▶ moving in an arena of 2m× 2m

▶ ANN controller, evolved using NEAT
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Tasks

Three tasks of increasing complexity:

▶ obstacle avoidance: move w/o colliding with obstacles

▶ goal homing: move towards a light, avoiding collisions

▶ periodic goal homing: periodically move towards to and away
from a light, avoiding collisions
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Arenas

▶ first arena used for evolution

▶ second arena for testing adaptation
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Fitness functions

Three degrees of a priori knowledge incorporation:

▶ Aggregate (AFF): low a priori knowledge, what is achieved

▶ Behavioral (BFF): medium, how it is achieved

▶ Tailored (TFF): combination (product) of AFF and BFF

▶ Functional incremental (FIFF): sequence (over the evolution)
of fitness functions, AFF, then BFF
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AFF, low a priori knowledge

▶ obstacle avoidance: move w/o colliding with obstacles

f = d (traveled distance)

▶ goal homing: move towards a light, avoiding collisions

f =
∑
t

I (t) (light intensity)

▶ periodic goal homing: periodically move towards to and away
from a light, avoiding collisions

f = σI (t) (1)



93/138

BFF, medium a priori knowledge

▶ obstacle avoidance: move w/o colliding with obstacles

f =

(
v l + v r

2

)
︸ ︷︷ ︸

move fast

(1−
√
|v l − v r |)︸ ︷︷ ︸

move straight

(
1

θ
min
t
(min

i
si (t))

)
︸ ︷︷ ︸

maximize dist from obstacles
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BFF, medium a priori knowledge

▶ goal homing: move towards a light, avoiding collisions

f =
∑
t

|cI (t)− v(t)| (2)

Notes:

▶ after collision, I (t) is halved for some time

▶ idea: move fast when far the light, move slowly (stop) when
in the light
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BFF, medium a priori knowledge

▶ periodic goal homing: periodically move towards to and away
from a light, avoiding collisions

f =
∑
t

φ(t)v(t) (3)

Notes:

▶ φ(t) =

{
−1 in medium light

+1 otherwise

▶ evaluation stopped upon collision

▶ idea: move fast when in medium light, slowly otherwise
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And then?

▶ lot of tests in many cases. . .

▶ also for testing adaptation (evolve on one arena, then resume
evolution on another arena)
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And then?
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And then?

“Fitness functions that include a high degree of a priori knowledge
(here TFF and BFF) influence the performance positively. They
help to simplify the evolution of a successful controller and hence
simplify the chosen task. However, [. . . ] foils the dominant idea of
evolutionary computation”

And what if the knowledge is wrong? What if it incorporates a
strong bias about how to solve the task?
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Subsection 4

Soft robots



100/138

Soft robots

https://www.youtube.com/watch?v=A7AFsk40NGE

https://www.youtube.com/watch?v=A7AFsk40NGE
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Soft robots

▶ w.r.t. to rigid-elements counterparts, soft robots may exhbit
“infinite” degrees of freedom

▶ more complex to design and control
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Voxel-based Soft robots (VSRs)

An aggregation of elastic cubic building blocks (voxels):

▶ morphology (body): how the voxels are aggregated

▶ controller (mind): how the voxel volumes change over the time

Sam Kriegman et al. “Simulating the evolution of soft and rigid-body robots”. In:

Proceedings of the Genetic and Evolutionary Computation Conference Companion.

ACM. 2017, pp. 1117–1120
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Embodied cognition paradigm

Rolf Pfeifer and Josh Bongard. How the body shapes the way we
think: a new view of intelligence. MIT press, 2006

“both bodies and brains combine to produce complex behaviors, in
contrast to the traditional view that the only seat of intelligence is
the brain”

▶ VSRs composed of many simple parts

▶ easy to put complexity in the body, rather than in the brain
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Evolving a controller for a VSR

Sam Kriegman, Nick Cheney, and Josh Bongard. “How
morphological development can guide evolution”. In: Scientific
reports 8.1 (2018), p. 13934

▶ VSR with pre-defined morphology (4× 4× 3 voxels)

▶ actual goal: investigating if development is beneficial to
evolution

▶ task: locomotion
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Representation

Each voxel volume varies with sin function:

si (k) = s0i + a sin(2πfk∆t + ϕi ) (4)

Amplitude and frequency equal for all the voxels; phase ϕi and
resting volume s0i ) are subjected to evolution.

▶ individual is θNS = (s01 , ϕ1, . . . , s
0
n , ϕn)

▶ with bilateral symmetry for resting volumes
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EA

P ← ∅
for all i ∈ {1, . . . , npop} do

P ← P ∪ (random(), 0)
end for
for all i ∈ {1, . . . , ngen} do

P ′ ← ∅
for all (θ, a) ∈ P do

θ′ ← mutate(θ)
P ′ ← P ′ ∪ (θ, a+ 1)
P ′ ← P ′ ∪ (θ′, a+ 1)

end for
P ′ ← P ′ ∪ (random(), 0)
P ← select(P ′, npop)

end for
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EA: some details

▶ mutation-only

▶ Pareto-dominance based optimization: maximize fitness,
minimize age → favor diversity

▶ overlapping and truncation selection: high selective pressure
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Evo+devo

Evo: evolution, devo: development

▶ evo only: params do not change during the “life” of the robot
(simulation)

▶ evo+devo: params linearly change over the life
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Evo+devo
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Results

It works!

▶ controllers evolved with evo+devo are better even before
learning → development increase evolvability

▶ side effect: evo+devo improve robustness to noise on
parameters
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Evo+devo VSR controllers

https://www.youtube.com/watch?v=Ee2sU-AZWC4

https://www.youtube.com/watch?v=Ee2sU-AZWC4
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Subsection 5

Evolving the body of a VSR
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Evolving the body of a VSR

Nick Cheney et al. “Unshackling evolution: evolving soft robots
with multiple materials and a powerful generative encoding”. In:
Proceedings of the 15th annual conference on Genetic and
evolutionary computation. ACM. 2013, pp. 167–174

▶ focus on the representation: a generative encoding is better
than a direct encoding

▶ combine different materials

▶ complexity in the body, rather than in the brain

▶ task: locomotion
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Representation

Phenotype:

▶ a connected volume within a 10× 10× 10 box of voxels

▶ voxels can be of different materials
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Representation

Genotype?

▶ direct encoding: fixed length string (g ∈ M103); then take just
the largest connected volume

▶ indirect (generative) encoding
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Generative encoding

CPPN: compositional pattern-producing network

▶ a network of basic mathematical functions

▶ a number of inputs equal to the dimensionality of the pattern
(here 3)

▶ one or more (here 2 for the material) output encoding pattern
value

Kenneth O Stanley. “Compositional pattern producing networks:
A novel abstraction of development”. In: Genetic programming
and evolvable machines 8.2 (2007), pp. 131–162
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CPPN
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CPPN: properties

▶ Patterns resemble nature: repetitions and symmetry

▶ Work at any scale
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How to build a CPPN?

With NEAT!

▶ node genes encode also the function
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VSR representation with CPPN
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Controller

Voxel of different materials contract and expands differently:

▶ soft passive tissue

▶ hard passive tissue

▶ contract/expand active tissue

▶ expand/contract active tissue (∆ϕ = π)

Controller is simple!

▶ no feedback from the environment
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Results

Indirect vs. direct encoding
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Results

Indirect vs. direct encoding
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Results

How many materials?
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Results

Material-based penalties (act on the fitness)
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Results

https://www.youtube.com/watch?v=z9ptOeByLA4

https://www.youtube.com/watch?v=z9ptOeByLA4
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Other similar approaches

Nicholas Cheney, Jeff Clune, and Hod Lipson. “Evolved
electrophysiological soft robots”. In: Artificial Life Conference
Proceedings 14. MIT Press. 2014, pp. 222–229

▶ how to transfer control signals across the body?

▶ https://www.youtube.com/watch?v=HgWQ-gPIvt4

Francesco Corucci et al. “Evolving soft locomotion in aquatic and
terrestrial environments: effects of material properties and
environmental transitions”. In: Soft robotics 5.4 (2018),
pp. 475–495

▶ different environment, also during the evolution

▶ https://www.youtube.com/watch?v=4ZqdvYrZ3ro

https://www.youtube.com/watch?v=HgWQ-gPIvt4
https://www.youtube.com/watch?v=4ZqdvYrZ3ro
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Subsection 6

Reality gap
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Reality gap

Good solutions found in simulations may be inefficient in reality!

▶ they “exploit badly modeled phenomena to achieve high
fitness values with unrealistic behaviors”

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux.
“The transferability approach: Crossing the reality gap in
evolutionary robotics”. In: IEEE Transactions on Evolutionary
Computation 17.1 (2013), pp. 122–145
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Transferability

Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux.
“The transferability approach: Crossing the reality gap in
evolutionary robotics”. In: IEEE Transactions on Evolutionary
Computation 17.1 (2013), pp. 122–145

Idea: fitness measures

▶ how well the task is solved

▶ how easily the controller can be transferred in reality

▶ Pareto-based optimization

Good, yet unrealistic controllers are not favored



131/138

Transferability
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Measuring the transferability

In principle:

1. observe the behavior in simulation

2. observe the behavior in reality

3. compute their distance: the larger, the lower the transferability

But:

▶ requires testing each controller in reality (pointless!)

▶ how to measure behavior similarity?
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Estimating the transferability

Idea:

▶ sometimes, test a controller in reality

▶ build an estimator of the transferability and refine it

Still requires a lot of domain knowledge for representing the
behavior
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Experiment 1: conditioned homing
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Conditioned homing

▶ Representation of the controller: fixed simple topology ANN,
direct encoding

▶ Fitness: traveled distance (with bonus if correct target is
reached) (optimum is known)

▶ Behavior representation: robot trajectory
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Experiment 1: 8-DOF quadrupedal locomotion
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8-DOF quadrupedal locomotion

▶ Representation of the controller: two control parameters

▶ Fitness: traveled distance (unknown optimum)

▶ Behavior representation: robot trajectory (just distance from
the starting point)
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8-DOF quadrupedal locomotion
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